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Double-diffusive finger convection is studied experimentally in a transparent Hele-
Shaw cell for a two-solute system. A less dense sucrose solution is layered on top
of a more dense salt solution using a laminar flow technique, and convective motion
is followed photographically from the static state. We systematically increase solute
concentrations from dilute to the solubility limit of the salt solution while maintaining
a fixed buoyancy ratio of approximately 1.08. Across the 14 experiments conducted,
the convective motion shows considerable variation in both structure and time scale.
We find that new finger pairs form continuously within a finger generation zone where
complexity increases with Rayleigh number, reaches a peak, and then decreases for
highly concentrated solutions. The vertical finger length scale grows linearly in time
across the full concentration range. The vertical finger velocity also increases linearly
with Rayleigh number, but as the concentrations increase, deviation from linearity and
asymmetrical convection occur. The horizontal length scale grows as a power law in
time with the exponent constant over most of the range; again, deviations are observed
for highly concentrated solutions. The observed deviations at high concentrations are
attributed to the increasing nonlinearity in the governing equations as the solutions
approach their solubility limits. There, the fluid properties become functions of
solute concentration and vary significantly within the experimental fields suppressing
structural complexity, imparting asymmetry to the convective motion, and influencing
emergent vertical and horizontal length scales and their growth.

1. Introduction
The dissimilar diffusion of density affecting components such as solutes and heat

can create structure and drive convective motion at a wide variety of scales across a
diverse set of fluid applications (see reviews by Turner 1985; Nield & Bejan 1992).
This motion has been termed double-diffusive convection (2 components) or multi-
component convection (3 or more components) with examples ranging from the
mixing of stellar gases (e.g. Spiegel 1972; Proctor & Weiss 1982; Loper & Roberts
1983) to the solidification of melts and pattern formation in crystal growth (e.g. Langer
1980; Azouni 1981; Fisher 1981). Double-diffusive convection has been studied most
extensively in oceanography (e.g. Gregg 1973; Stern 1975; Schmitt 1994) where the
heat–salt fingering mechanism operating on a scale of centimetres can affect ocean
dynamics and circulation over scales of many kilometres. Within porous media and
in the context of environmental problems, it is also possible that this mechanism
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can lead to surface–groundwater interactions and influence subsurface contaminant
transport (Green 1984; Imhoff & Green 1988; Cooper, Glass & Tyler 1997).

In the traditional analysis of the double-diffusive system, the dimensionless forms
of the conservation equations for momentum and mass yield two independent di-
mensionless parameters: the Rayleigh number for the faster diffusing component
(T ), RT = (βT∆TgH3/DTν), and the Rayleigh number for the slower diffusing com-
ponent (S), RS = (βS∆SgH3/DTν), where βT and βS are the chemical expansion
coefficients, ∆T and ∆S are characteristic concentration differences, H is a charac-
teristic distance, g is the acceleration due to gravity, DT is the molecular diffusion
coefficient of the faster diffusing component, and ν is the average fluid kinematic
viscosity. The dimensionless forms of the two advection–diffusion equations yield an
additional dimensionless parameter, τ = DS/DT , where DS is the molecular diffusion
coefficient of the slower diffusing component. In a large portion of the literature, it
has been common to consider behaviour as a function of only the buoyancy ratio,
Rρ = (RT/RS ) = (βT∆T/βS∆S). However, a dependency on the magnitude of solute
concentrations (i.e. RT and RS ) will exist beyond their simple ratio embodied in Rρ,
as has been pointed out by recent experiments and numerical simulations (e.g. Taylor
& Veronis 1996; Shen & Veronis 1997).

In this paper, we focus on the two-solute system and consider the dependency of
double-diffusive finger convection on the magnitude of solute concentrations (and
corresponding Rayleigh numbers) while maintaining a fixed Rρ. The components
considered are two miscible solutes, sodium chloride (salt) and sucrose, having a
factor of ∼ 3 difference in molecular diffusion coefficients. Within a transparent
Hele-Shaw cell, an initial condition was formed yielding two horizontal fluid layers,
sucrose on top of salt, with a stabilizing, near step function, density distribution.
We systematically increased the component concentrations from very dilute to the
solubility limit of the salt while maintaining a fixed Rρ of ∼ 1.08. Because of the
increase in solution viscosity at high concentration, Rayleigh numbers reach an apex
and then begin to decrease with further increases in concentration along the Rρ line
in Rayleigh space. In this region of high concentration, we find Rayleigh numbers to
non-uniquely define convective behaviour.

For all but the most dilute experiment, a self-organized, horizontal array of verti-
cally convecting fingers develops. The appearance of the convecting structure varies
with Rayleigh number from a few wide fingers with diffuse edges and relatively low
growth rates, to a large number of thin and distinct fingers with high growth rates.
In general, we found new finger pairs to form throughout an experiment within a
finger generation zone that straddles the initial contact between the two miscible
fluids. The overall structural complexity of the fingering fields systematically increases
with Rayleigh number over most of the range tested. However, for highly concen-
trated solutions, vertical growth becomes asymmetric, and where Rayleigh numbers
decrease relative to the apex, structural complexity is suppressed. Measurement of
the emergent vertical and horizontal length scales of the convecting field in time
for a given experiment shows linear and power law behaviour, respectively. Across
the experimental series, the vertical finger velocity first varies linearly with Rayleigh
number and then becomes constant for more concentrated solutions. The exponent
that defines the power law growth of the horizontal length scale first is constant with
Rayleigh number at a value of ∼ 0.5 and then decreases for highly concentrated
solutions. In addition, the early time horizontal length scale decreases with Rayleigh
number to the −0.5 power as suggested by theory and then becomes constant at
higher solution concentrations. These experimental results underline the statements
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by Taylor & Veronis (1996) that double-diffusive convection cannot be treated as a
single phenomenon or characterized by a single analysis, especially when considering
solute systems.

2. Theory
In support of our experimental design, we consider the traditional governing

equations, assumptions, and dimensionless control parameters as follows. The problem
of interest consists of two uniform, horizontal layers composed of solutions containing
T and S separated by a miscible interface within a Hele-Shaw cell of permeability k
and vertical extent H . The lower (denser) layer contains the more rapidly diffusing
component at concentration T , and the upper (lighter) layer contains the slower
diffusing component at concentration S . Cartesian coordinates are defined with the
origin at the lower boundary and z = H at the upper boundary of the cell. For
convection to occur, the fluid density must be a function of the concentration such
as expressed in the following equation of state,

ρ = ρ0(1 + βTT + βSS), (1)

where ρ0 is the reference density of pure water, βT = (1/ρ0)(∂ρ/∂T ), and βS = (1/ρ0)
(∂ρ/∂S) are the chemical expansion coefficients.

In the standard theoretical development, it is assumed that the Oberbeck–
Boussinesq approximation holds, that is, variations in density are retained only in
the buoyant term of the momentum equation. Additionally, concentration variations
must have negligible effects on component diffusion coefficients, chemical expansion
coefficients and fluid viscosities within the problem domain. With these constraints,
the governing equations of conservation of mass, Darcy momentum, and advection–
diffusion for each component are

∇ · V = 0, (2)

V = −k
µ

(∇P + ρg), (3)

φ

(
∂T

∂t

)
+ V · ∇T = DT (∇2T ), (4)

φ

(
∂S

∂t

)
+ V · ∇S = DS (∇2S), (5)

where V , k, µ, P , ρ, g, φ, t and D are, respectively, the velocity vector, intrinsic
permeability, dynamic viscosity, pressure, fluid density, the vector of acceleration due
to gravity within the plane of the cell (positive downward and modified for the
inclination of the cell), porous media porosity, time, and diffusion coefficient, with

∇ = ((∂/∂x)î + (∂/∂y)ĵ + (∂/∂z)k̂), ∇2 = ((∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2)), and î, ĵ , k̂
the unit vectors in the x-, y-, z-directions. Combining equations (1), (2) and (3), (i.e.
substituting (1) into (3), taking the curl of (3) twice, and imposing (2)) results in the
following momentum equation

∇2V =

(
kg

ν

)(
βT

(
− ∂

2T

∂x∂z
î − ∂2T

∂y∂z
ĵ + (∇2

xyT )k̂

)
+ βS

(
− ∂2S

∂x∂z
î − ∂2S

∂y∂z
ĵ + (∇2

xyS)k̂

))
, (6)

where ν = µ/ρ0 is the average kinematic viscosity and ∇2
xy = (∂2/∂x2) + (∂2/∂y2).
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The dimensionless forms (Nield & Bejan 1992) of equations (4) to (6) can be written
as

∇2V ∗ = RT

(
− ∂2T ∗

∂x∗∂z∗
î − ∂2T ∗

∂y∗∂z∗
ĵ + ∇2

xyT
∗k̂
)

+RS

(
− ∂2S∗

∂x∗∂z∗
î − ∂2S∗

∂y∗∂z∗
ĵ + ∇2

xyS
∗k̂
)
, (7)

φ
∂T ∗

∂t∗
+ V ∗ · ∇T ∗ = ∇2T ∗, (8)

φ
∂S∗

∂t∗
+ V ∗ · ∇S∗ = τ∇2S∗, (9)

where all starred quantities may be dimensionalized using the following scales: H
for the length scale, H2/DT for the time scale, DT/H for the velocity scale, and
the maximum problem concentrations ∆T and ∆S for the concentration scales. The
dimensionless diffusivity ratio is given as in the general fluid problem by τ = DS/DT ;
however, the dimensionless Rayleigh numbers for the Hele-Shaw problem are slightly
different. In the Hele-Shaw problem, the cell permeability is used to scale viscous
influences yielding RT = (βT∆TgHk/DTν) and RS = (βS∆SgHk/DTν). Based on our
problem, with sugar overlying salt, the signs of RT and RS are negative and positive,
respectively. For this set of equations, Nield (1968) has determined the stability
boundary for double-diffusive fingering as

RT + (RS/τ) = Rc, (10)

where 0 6 Rc 6 4π2, depending on system boundary conditions. This relation forms
a straight line in Rayleigh space above which convection occurs.

In search of a single characteristic control parameter, often RT and RS are combined
to yield the dimensionless buoyancy ratio, Rρ, as

Rρ =
RT

RS
=
βT∆T

βS∆S
. (11)

with reference to (7), Rρ essentially weighs the relative importance of the T and
S terms on its right-hand side and is negative for our sucrose over salt problem.
Arbitrarily choosing to eliminate RT , we may express the momentum equation (7)
and the stability boundary (10) in terms of Rρ and RS as

1

RS
∇2V ∗ = Rρ

(
− ∂2T ∗

∂x∗∂z∗
î − ∂2T ∗

∂y∗∂z∗
ĵ + ∇2

xyT
∗k̂
)

+

(
− ∂2S∗

∂x∗∂z∗
î − ∂2S∗

∂y∗∂z∗
ĵ + ∇2

xyS
∗k̂
)
, (12)

and (
Rc

RS
− Rρ

)
= τ−1. (13)

Thus, for large RS or Rc = 0, stability is dependent on only Rρ, as has been verified
experimentally by Cooper et al. (1997), while the determination of post instability
behaviour requires the additional knowledge of RT or RS .

At high component concentrations, the diffusion coefficients, chemical expansion
coefficients and fluid viscosities will all vary significantly within the problem domain,
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and thus the development above will no longer strictly apply. Equations for fluid
momentum (3) and the advection–diffusion of each component, (4) and (5), become
nonlinear and the definition of appropriate dimensionless control parameters becomes
somewhat ambiguous. In our experimental design detailed below, we will consider the
variation in system behaviour at a single fixed Rρ for the full range of concentrations
from dilute to near the solubility limits in a two-component solute system. In this
manner, RS , RT , and τ will vary systematically and the nonlinearity within the
governing equations will naturally increase as we move to high solute concentrations.

3. Experimental design
Our objective is to study the behaviour of double-diffusive finger convection at

fixed Rρ as we systematically increase component concentrations and allow the
dimensionless parameters RS , RT and τ to vary. We define system behaviour based
on the evolving structure of the concentration field and quantify this behaviour with
corresponding measures of emergent vertical and horizontal length scales in time. This
structure can be clearly visualized and recorded photographically using a transparent
Hele-Shaw (parallel plate) flow cell in combination with a dye added to one of the
solutions. As have many other studies in the past, we choose the two-component
sodium chloride (T ) and sucrose (S) system, yielding a factor of ∼ 3 difference in
the molecular diffusion coefficients at dilute concentrations. The initial condition is
formed with a layer of less dense sucrose solution above a layer of more dense and
dyed sodium chloride (salt) solution. To be far from diffusive stability, Rρ is controlled
at 1.083 (close to neutral buoyancy) as we systematically increase the salt and sucrose
concentrations in the lower and upper solutions, respectively, from dilute (< 0.1%
solute by mass) to very concentrated (∼ 35% by mass for salt which is near its
solubility limit and ∼ 70% by mass for sucrose).

Table 1 presents the parameters for each of the 14 experiments conducted. Our
design roughly doubled the solution concentrations for each successive experiment,
with slight adjustment for variation in expansion coefficients with concentration to
maintain the target Rρ. The chemical expansion coefficients (βT , βS ) are calculated
based on linear regression of the density–concentration data from Weast (1986) be-
tween zero and the initial concentration of each solution. The molecular diffusion
coefficients (DT ,DS ) are obtained from Stokes (1950) and Irani & Adamson (1958),
respectively, at 50% of the maximum concentration representing the average con-
centration of each solution within the initial fluid interface. The viscosities (νT , νS ),
based on the solution concentrations, are obtained from Weast (1986). As we show
in figure 1, over most of the range of concentrations considered, diffusion coefficients
(τ ∼ 0.3) and fluid viscosities are nearly constant. However, at high concentrations, DS
decreases (τ approaches ∼ 0.2), while the viscosity of each fluid increases significantly
(sucrose more than salt). The error in the fluid properties is estimated to be ∼ 2%.

Figure 2 shows the locations of the 14 experimental points in Rayleigh space as
defined by initial conditions and with H taken as the vertical height of the flow cell
(16.25 cm). As is common in the literature, we have defined RT and RS here and in
the remainder of the paper with the average viscosity of the fluid (average of νT and
νS in table 1). The experimental transect starts out as a ‘spoke’ emanating from the
origin (figure 2a) and as concentrations increase (figure 2b), it reaches an apex in
Rayleigh space (experiment 12), and then reverses direction (experiments 13 and 14).
Note, for experiments 11, 13 and 14, slight deviation (∼ 1%) from the target Rρ of
1.083 occurred, as can be seen in figure 2(b).
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Symbol −∆T ∆S DT × 109 DS × 1010 νT × 106 νS × 106

Experiment identifier βT βS (kg kg−1) (kg kg−1) (m2 s−1) (m2 s−1) (m2 s−1) (m2 s−1) −Rρ −RT RS

1 � 0.7268 0.3846 0.0002184 0.0003813 1.61 5.05 1.01 1.04 1.082± 0.008 385± 12 355± 11
2 � 0.7268 0.3846 0.0004369 0.0007625 1.60 5.05 1.01 1.04 1.083± 0.008 772± 23 713± 21
3 H 0.7268 0.3846 0.0007646 0.0013345 1.59 5.05 1.01 1.04 1.083± 0.008 1357± 41 1253± 38
4 N 0.7268 0.3846 0.0010923 0.0019063 1.59 5.05 1.01 1.04 1.083± 0.008 1946± 58 1798± 54
5 � 0.7268 0.3846 0.0017475 0.0030500 1.57 5.05 1.01 1.04 1.083± 0.008 3139± 94 2899± 87
6 � 0.7268 0.3846 0.0034950 0.0061052 1.54 5.04 1.01 1.05 1.082± 0.008 6395± 192 5912± 177
7 • 0.7119 0.3815 0.0068130 0.0117400 1.50 5.02 1.01 1.06 1.083± 0.008 12 494± 375 11 537± 346
8 4 0.7000 0.3790 0.0103080 0.0175800 1.48 5.00 1.02 1.06 1.083± 0.008 18 696± 561 17 265± 518
9 + 0.7009 0.3786 0.0137145 0.0234400 1.48 4.98 1.02 1.07 1.083± 0.008 24 814± 744 22 909± 687

10 × 0.6901 0.3705 0.0361360 0.0621500 1.48 4.85 1.03 1.15 1.083± 0.008 61 880± 1856 57 139± 1714
11 � 0.6735 0.3569 0.0722720 0.1264783 1.47 4.63 1.07 1.31 1.078± 0.008 110 910± 3327 102 849± 3085
12 � 0.6460 0.3320 0.1441103 0.2588000 1.49 4.22 1.16 1.84 1.083± 0.008 166 086± 4983 153 408± 4602
13 e 0.5978 0.2808 0.3150000 0.6250000 1.53 3.19 1.54 4.62 1.073± 0.008 159 168± 4775 148 329± 4450
14 O 0.5877 0.2745 0.3500000 0.7000000 1.54 3.00 1.64 5.43 1.071± 0.008 150 559± 4517 140 633± 4219

Table 1. Summary of parameters for the series of experiments conducted. All values represent initial conditions. βT , βS (±0.5%) are the chemical
expansion coefficients for sodium chloride and sucrose, respectively, calculated based on linear regression of the density-concentration data from
Weast (1986) between zero and the initial concentration of the fluid layer. ∆T and ∆S (±0.002%) are the maximum concentrations of sodium chloride
and sucrose, respectively. DT and DS (±2%) are the molecular diffusion coefficients of sodium chloride taken from Stokes (1950) and sucrose from
Irani & Adamson (1958) at 50% of the maximum concentration representing the average of each solution. νT and νS (±2%) are the kinematic
viscosities for sodium chloride and sucrose, respectively, taken from Weast (1986) for the initial solution concentrations. Rρ is the buoyancy ratio
defined as βT∆T/βS∆S . Note, Rρ value for experiments 11, 13 and 14 deviate slightly from the target value of 1.083. RT (= βT∆TgHk/DT ν), ±3%,
is the salinity Rayleigh number, and H is defined as the height of the cell, 16.25 cm. RS (= βS∆SgHk/DT ν), ±3%, is the sucrose Rayleigh number.
g (acceleration due to gravity) is modified by cos(θ) where θ is the angle of the cell from the vertical (35◦). k is the intrinsic permeability of the cell
given as 3.058× 10−9 m2.
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Figure 1. Variability in the fluid properties of rr�, diffusivity and �, viscosity with increase in
(a) salt concentration (T kg kg−1) and (b) sucrose concentration (S kg kg−1).

With reference to (12), we require only specification of a single Rayleigh number
as the other is given by (11). The choice of which Rayleigh number, RT or RS , to use
is subjective. The choice of RS can be justified because sucrose is the destabilizing
component of the system; however, the use of RT can be justified because salt is the
faster diffusing solute and can be viewed as the component contributing the most to
the local density difference. In the remainder of the paper we have arbitrarily chosen
to consider system behaviour as a function of RS .

The Hele-Shaw cell used for all experiments (internal dimensions: 30.51 cm wide×
16.25 cm high with a 0.0192 cm gap) was fabricated from two flat glass plates each
mounted on a rectangular metal frame. A clear rigid shim was placed on each
long edge of the bottom glass plate, and the cell was assembled by placing the top
plate in contact with the shims and bolting the frames together. The cell was sealed
along the remaining two sides and placed in a clamp that maintained the cell at an
angle of 35◦ from the vertical. The intrinsic permeability of the cell was measured
to be 3.058 × 10−9 m2, with negligible change from the beginning to the end of the
experimental series.

The most common method applied to obtain an initial horizontal layering of two
solutions uses a physical barrier placed within the cell gap that is removed to bring
the two solutions into contact (e.g. Wooding 1969; Taylor & Veronis 1986; Cooper et
al. 1997, 2001). However, removal of the barrier at the start of an experiment causes
significant initial disturbances leading to ambiguity in the interpretation of system
behaviour (e.g. Linden, Redondo & Youngs 1994; Dalziel, Linden & Youngs 1999).
To avoid these disturbances, we developed a layering method that does not employ
a physical barrier. The solutions enter a water-saturated cell at the upper and lower
corners of one side and exit at the midpoint between the corners of the other (see
figure 3a). The pressure at each entry and exit point is controlled to yield a nearly
flat, horizontal, undisturbed miscible interface of the order of 1 mm thick. In this con-
figuration, over 100 cell volumes of each solution are flushed to assure concentration
uniformity above and below the interface and yield a consistent and reproducible
initial condition for each of the 14 experiments. Quantitative light transmission tech-
niques (e.g. Detwiler, Rajaram & Glass 2000) were applied in preliminary experiments
to verify that the experimental procedure yielded the specified initial condition.

Once the initial condition was established, flow valves connected to the source and
sink were closed, and the initially static system was allowed to evolve naturally. We
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Figure 2. Location of experimental points in Rayleigh space for a fixed Rρ of 1.083 (tolerance
within 1%). (a) The low magnitude Rayleigh number space with experimental locations 1 to 6.
(b) The full Rayleigh space region of interest with experimental points 6 to 14 clearly defined.
� experiment 1; �, 2; H, 3; N, 4; �, 5; �, 6; •, 7; 4, 8; +, 9; ×, 10; �, 11; �, 12; e, 13, O, 14.

tagged the salt solution with a passive dye tracer at a concentration of 1 g l−1 (Warner
Jenkins FD&C Blue #1). The addition of the dye has a negligible influence on fluid
density and allows us to distinguish between the two fluids during the course of an
experiment. The evolution of the convection was recorded using a 35 mm camera at
predetermined time increments with a diffuse fluorescent light source backlighting
the entire flow field (figure 3b). The system was located in a controlled temperature
environment (20.8 ◦C±0.3 ◦C) and the bulbs were energized for a 1 min period before
a photograph was taken and then immediately turned off to minimize thermal loading.
We note that while the diffusivity of the dye was 0.4 times that of the salt that it
tagged, convection far exceeded diffusion in all but the most dilute experiment and
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Figure 3. Schematic of the Hele-Shaw cell and the experimental apparatus. (a) Configuration of the
two solutions (less dense sucrose solution over more dense salt solution) within the Hele-Shaw cell
of flow dimensions 30.51 × 16.25 cm2 with 0.0192 cm gap. For all experiments, the Hele-Shaw cell
was orientated at 35◦ from vertical. The solutions enter a water-saturated cell at the upper and lower
corners of the left-hand side and exit at the midpoint between the corners of the right-hand side.
The pressure at each entry and exit point is controlled to yield a nearly flat horizontal undisturbed
miscible interface of the order of 1 mm thick without the use of a physical barrier. (b) A diffused
fluorescent light source backlights the entire flow field, and a 35 mm camera is used to photograph
the convective motion.

thus measures of the emergent length scales based on the dye fields should accurately
represent those of the underlying salt and sucrose.

Finally, to consider the intrinsic variability of the resulting convection for a single
experimental point, and to understand how this variability affects our interpretation
of behavioural differences across the experimental series, experiment 9 was repeated
4 additional times. The overall finger structures in each of the five runs are nearly
indistinguishable; however, as we would expect, fingers form at different locations in
each run. Results indicate that the representative variability of the measured length
scales at a given experimental point is negligible compared to the variation observed
with RS .

4. Results and discussion
Across the 14 experiments, the evolving concentration fields show marked differ-

ences in both emergent structure and evolution rate. To illustrate these differences,
we present one photograph each from 8 of the 14 experiments taken just before the
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fastest convecting fingers have reached either the top or bottom boundary (figure 4).
In general, as RS increases by nearly three orders of magnitude, fingers narrow and
their velocities increase. Figure 5 shows the time, t∗top (= ttopDt/H

2), for experiments
2 to 14, and figure 6 the horizontal length scale, λ∗top (= λtop/H), just prior to finger
contact with the top or bottom boundary. λtop was measured by dividing the cell
width by half the number of transitions from dyed to undyed solution at the location
of the initial fluid interface (experiments 2 to 12). Figure 6 includes data only for
experiments 2 to 12 because the fineness of the structure at the initial fluid interface
did not allow us to count transitions with certainty for experiments 13 or 14. The time
to reach the top or bottom boundary follows an approximate power law (exponent
of −1.6) over most of the range, but deviates at high RS . For the horizontal length
scale, we also see power law behaviour (exponent of −0.6). We note, in figure 4
(f–h), that at high RS , the convection becomes asymmetric about the initial fluid
interface, as shown in figure 7. In the following sections, we first discuss the trends in
qualitative system behaviour as Rayleigh numbers vary. We then present quantitative
measurements of emergent vertical and horizontal length scales as a function of time
and RS .

4.1. Qualitative description

In the first experiment, RS = 355 (figure 4a), it is difficult to detect convection by
eye although there appears to be a low-amplitude, large-wavelength anomaly in the
middle and at either end of the cell. Across all of the higher RS experiments, fingers
form a regular array at the initial fluid interface and grow, eventually reaching the
top and bottom of the cell. However, soon after initiation, the convective motion
undergoes a transition where new finger pairs are generated from a zone straddling
the location of the initial fluid interface, termed the ‘finger generation’ zone by
Cooper et al. (2001). There, new fingers are generated throughout the course of each
experiment. Figure 8 compares a portion of an early time photograph (figure 8a)
with two later times for RS of 2.29 × 104 (figure 4e). Wide fluid ‘trunks’ that are
rooted within the generation zone (wider dark and light regions in figure 8b, c) feed
growing fingers, become unstable, and generate new finger pairs. This behaviour is
consistent with the numerical simulations of Shen & Veronis (1991) and is attributed
to the intrinsically unstable vertical density contrast across the inclined trunk edges.
The new finger pairs generated (one in the middle, one on the left and one on the
right in figure 8c) have similar vertical and horizontal scales to the dominant fingers
at earlier time (figure 8b). There is a tendency for these newly formed fingers to
become entrained within the core of previous fingers and follow along tracks or
‘conduits’ such as described by Cooper et al. (2001). This entrainment process leads
to the formation of a local stair-step concentration profile along the conduit. As RS
and, hence, finger velocities increase, the finger shape changes from wide and diffuse

Figure 4. Series of eight photographs showing the evolved concentration fields just prior to contact
between the fastest convecting finger and either the top or bottom boundary. Sucrose solution is
denoted by the lighter regions and salt solution by the darker regions. The sucrose Rayleigh number
and the elapsed time of convection for each experiment are defined as: (a) experiment 1: RS = 355
at t = 425 h; (b) experiment 3: RS = 1253 at t = 140 h; (c) experiment 5: RS = 2899 at t = 36 h;
(d ) experiment 7: RS = 11 537 at t = 3 h; (e) experiment 9: RS = 22 909 at t = 1.3 h; ( f ) experiment
11: RS = 102 849 at t = 0.35 h; (g) experiment 12: RS = 153 408 at t = 0.35 h; (h) experiment 14:
RS = 140 633 at t = 0.35 h. The concentration of dye tracer added to the salt solution was constant
for all experiments. The slight deviations in photograph contrast are due to inherent variability in
the film and film development process. Notable features are discussed in the text.
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(a)

(b)

(c)

(d )

Figure 4 (a–d). For caption see facing page.
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(e)

( f )

(g)

(h)

Figure 4 (e–h). For caption see page 170.
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Figure 5. Dimensionless time, t∗top (= ttopDT/H
2), just prior to contact between the fastest convecting

finger and either the top or bottom boundary for experiments 2 to 14, as a function of RS . Behaviour
follows an approximate power law for 700 < RS < 2.29× 104 (solid line) then deviates at higher RS
(dashed line). The 4 repeated runs of experiment 9 (+) show negligible variability in time required
for the fastest convecting finger to reach the boundary.
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Figure 6. Dimensionless horizontal length scale, λ∗top (= λtop/H), just prior to contact between the
fastest convecting finger and either the top or bottom boundary, for experiments 2 to 12, displays
power law behaviour (solid line) as a function of RS . The 4 repeated runs of experiment 9 (+) show
a representative variability in the horizontal length scale of ∼ 3%.

(figures 4b and 4c) to narrow and sharp with thinner finger ‘stems’ feeding wider
bulbous tips (figure 4f –h). Bulbous tips were observed in the salt finger experiments
of Taylor & Veronis (1986) at large ∆S , and they also appear in the salt finger
calculations of Shen (1989). At RS above 1.15× 104 (figure 4d–h) the bulbous finger
tips themselves become unstable and generate additional finger pairs.

Figure 9 shows magnifications of a portion of the finger generation zone for
experiments 9 to 14. Within the finger generation zone, the structural complexity
gradually increases with RS and reaches a peak at the apex RS of 1.53×105 (figure 9d ).
At this peak, the continuous generation of new fingers at a scale nearly identical with
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Figure 7. Characterization of flow symmetry, hratio (= hdescending/hascending), for experiments 3 to 14
as a function of RS , where hdescending is the height of the 10 fastest downward convecting fingers and
hascending is the height of the 10 fastest upward convecting fingers. The solid line indicates symmetric
flow, hratio = 1.

the initial finger width causes an intense ‘folding’ and ramified structure that is
probably fractal between this smallest length scale and the scale of the cell. At higher
concentrations, as the salt solution approaches the solubility limit, complexity within
the finger generation zone sharply decreases and the initial fluid interface remains
distinct in time (figure 9e, f ). Now, fingers tend to form at preferred locations that
are maintained as the system evolves. Thus, the ‘folding’ that increases structure
complexity along the assent to the apex RS is suppressed in the descent, leading to
very different convective structure.

4.2. Vertical length scale growth

We define the vertical length scale of the fingering region, h, as the average distance
between the location of the tips of the 10 farthest advanced ascending and descending
fingers. For each experiment, we measured a series of photographs (∼ 6) from early
time until the fastest convecting finger contacted either the top or bottom boundary.
The vertical length scale, h∗ (= h/H), in time, t∗ (= tDT/H

2), is shown in figure 10
for 1.25 × 103 < RS < 1.54 × 105 (experiments 3 to 14). The finger heights for
experiments 1 and 2 were not measured owing to the difficulty in detection of the
finger peaks. Although the results of experiments 3 and 4 show a fair amount of
scatter, at RS of 2.90× 103 and above (experiments 5 to 14), we find h∗ ∝ t∗ yielding
a constant characteristic vertical finger growth rate, V ∗c , for each experiment. Similar
linear relationships have been reported by Stern & Turner (1969), Linden (1973) and
Taylor & Veronis (1996) in large tanks, and by Imhoff & Green (1988) and Cooper
et al. (2001) in porous media and a Hele-Shaw cell, respectively.

For relatively low Rayleigh numbers (experiments 3 and 4), the growth of h∗ slows
and then picks up again, as can be seen in figure 10 (solid triangles). Such a trend
is also observed for double-diffusive convection in three-dimensional tanks, where it
is attributed to large-scale circular convection in the upper and lower layers of the
system (e.g. Taylor & Veronis 1996). There, the large-scale circular motions shear off
the tips of the convecting fingers and limit their growth. However, in our Hele-Shaw
cell experiments, large-scale circular convection did not occur; therefore, a different



Double-diffusive finger convection 175

(a) (b) (c)

Figure 8. Representative regions (∼ 3 × 12 cm2) of the convective motion (light region indicates
sucrose, dark region salt) for experiment 9 (RS of 2.29×104) at (a) 4, (b) 16, and (c) 70 min. Notable
features discussed in text.

mechanism acts to cause the reduction in growth at early time. For moderate to
high Rayleigh numbers, early time behaviour is characterized by a relatively high
finger frequency, and these small-scale fingers initially grow without influence from
their neighbours. However, in time, fingers widen and thus begin to interact causing
subsequent merger and the formation of a trunk structure where new finger pairs
are continuously generated. This transition or reorganization is accompanied by
minimum growth in the vertical direction and is consistent with the results of Shen &
Veronis (1991) for numerical simulations of solute fingering in a Hele-Shaw cell. The
dip in the vertical growth is not evident in our data (experiments 5 to 14) because
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(a) (b)

(c) (d )

(e) ( f )

Figure 9. Representative regions (∼ 4 × 4 cm2) that capture the finger structure near the initial
fluid interface for experiments 9 to 14(a–f ). As concentrations increase, the structure becomes more
complex (a–d ) and then is suppressed causing the initial fluid interface to remain distinct (e, f ).

the relatively large time increments chosen between photographs did not allow the
growth rates of h∗ to be determined at very early time, but it is probable that it also
occurs for these experiments.

Another interesting result comes from considering the variation of the heights of
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Figure 10. Dimensionless vertical length scale, h∗ (= h/H), as a function of dimensionless time,
t∗ (= tDT/H

2). Behaviour shows, in general, linear response (shown by regression lines); however,
there are transition periods that appear in H, experiment 3 and N, experiment 4. The time to reach
a given h∗ decreases for each sequential experiment with the notable exception of experiments 11
to 14 (�, 11; �, 12; e, 13; O, 14) where the data show little variation. The 4 repeated runs of
experiment 9 (+) show a representative variability in h∗ of ∼ 1.5%.
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Figure 11. The average normalized standard deviation in the height of the measured fingers, 〈σ/h〉,
as a function RS shows a power law relationship (solid line). The 4 repeated runs of experiment 9
(+) show an average representative variability of ∼ 10%.

the fastest 10 ascending and 10 descending fingers. The normalized standard deviation
in the measured finger heights, σ/h, does not show a significant trend in time within
a single experiment. The average normalized standard deviation, 〈σ/h〉, across all
measurements for a single experiment, decreases with RS and obeys a power law with
an exponent of −0.46 (figure 11). However, we note that this decrease in 〈σ/h〉 is also
influenced by the increase in the number of fingers that each experiment contains. If
we compare an RS of ∼ 2.90× 103 (figure 4c) with an RS of ∼ 2.29× 104 (figure 4e)
and consider only a horizontal zone that contains the same number of fingers, 〈σ/h〉
for the higher RS will increase. In other words, our measurement of only the 10
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Figure 12. The dimensionless characteristic velocity, V ∗c (= VcH/DT ), for the convecting fingers in
experiments 3 to 14 as a function of RS . At very dilute and concentrated solutions (dashed line)
deviation from linearity is observed. The 4 repeated runs of experiment 9 (+) show an average
representative variability of ∼ 1.5%.

fastest fingers in an experiment biases our measure of 〈σ/h〉 and could overpredict
the absolute value of the exponent in the power law.

Figure 12 presents the dimensionless characteristic velocity, V ∗c (= VcH/DT ), as a
function of RS . In the midrange, for 5.91×103 < RS < 2.29×104, V ∗c increases linearly
due to the systematic increase in buoyant forces driving the motion. Above this range,
for RS > 5.71× 104, V ∗c approaches a constant value and, regardless of the Rayleigh
number magnitude, the vertical growth rate is invariant. This behaviour, with nearly
three orders of magnitude variation in V ∗c and the transition to the constant value at
high concentration, emphasizes the strong variation of system behaviour at fixed Rρ
over the full concentration range.

4.3. Horizontal length scale growth

We define the horizontal length scale, λ, by dividing the cell width by half the number
of transitions between dyed and un-dyed solutions along the initial fluid interface.
The λ was not measured for experiments 1 and 2 because fingers were too diffuse, or
for experiments 13 and 14 because it was difficult to detect finger edges with certainty
because of the fineness of the convective structure. Figure 13 shows the temporal
development of λ∗ (= λ/H), for 1.25 × 103 < RS < 1.54 × 105 (experiments 3 to 12).
Across the entire range, λ∗ increases with time following a power law with exponent
η. For the range of 1.25×103 < RS < 5.71×104 (experiments 3 to 10), η = 0.54±0.03,
and for higher RS , η begins to decline reaching a value of 0.1 at an RS of 1.54× 105

(experiment 12) (figure 14).
For dilute solutions, the numerical simulations of Shen & Veronis (1991) (Rρ = 1.5

and 2.0, τ = 0.33 (salt–sucrose), and RT = 2500, which is similar to experiment 5 in
the current work) reveal a power law relation with η of 0.5 (solid line in figure 14).
Cooper et al. (2001) also report a constant value for η of ∼ 0.5 for Rρ ranging from
1.4 to 2.8 in salt–sucrose system experiments with salt concentrations comparable to
the current experiments 5 to 8. However, for RS > 1.03 × 105 (experiments 11 and
12), the finger structure becomes more complex, yielding a slower increase in λ∗ with
time, and hence a decrease in η.
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Figure 13. Dimensionless horizontal length scale, λ∗ (= λ/H), as a function of dimensionless
time, t∗ (= tDT/H

2), displays power law behaviour over the entire range. The 4 repeated runs of
experiment 9 (+) show a representative variability of ∼ 3%.
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Figure 14. The power law exponent, η, obtained from the λ∗(t∗) relationship as a function of RS .
The solid line represents a theoretical η equal to 0.5. The 4 repeated runs of experiment 9 (+) show
an average representative variability of ∼ 8%.

Considering the early time horizontal length scale, λ∗early , we see a general decrease
with RS of over an order of magnitude (figure 15). Linear stability analysis conducted
by Nield & Bejan (1992) suggests the relationship λ∗early ∝ R−0.5

S , shown by the solid

line in figure 15. In the midrange, for 5.91× 103 < RS < 2.29× 104, the experimental
results and theory correlate reasonably well. However, at low RS , we again see some
scatter, and for RS > 5.71× 104, λ∗early levels off and approaches a constant value.

4.4. Discussion of deviations at high concentration

In the range of Rayleigh space up to RS = 5.71× 104 (experiments 1 to 10), the dilute
approximation holds along with equations (3) to (5), and we see systematic changes
in behaviour as a function of RS for fixed Rρ. Behaviour is found to be reasonably
well represented with hratio = 1, V ∗c ∝ RS , η ∼= 0.5, and λ∗early ∝ R−0.5

S . In the high
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Figure 15. Dimensionless horizontal length scale at early time, λ∗early (= λearly/H), as a function of

RS . λ∗early is taken as the first point measured for each experiment, as shown in figure 13. The solid
line gives the theoretical relationship predicted by linear stability analysis with exponent of −0.5
(Nield & Bejan 1992). The 4 repeated runs of experiment 9 (+) show an average representative
variability of ∼ 6%.

RS region (RS > 1.03 × 105, experiments 11 and higher), the component diffusion
coefficients, chemical expansion coefficients and fluid viscosities all vary significantly
within the problem domain owing to their dependency on solute concentration, and as
concentrations go beyond dilute, the momentum (3) and advection–diffusion equations
(4) and (5) become nonlinear. In this realm, the prior definitions of dimensionless
parameters do not properly represent system behaviour.

To examine the asymmetric growth between the upward and downward moving
fingers at high concentration, we consider the influence of differential solution viscosity
such as suggested by Imhoff & Green (1988). Redefining each Rayleigh number to
reflect the viscosity of each corresponding solution, we can rewrite (11) as

Rρ =
R̂T

γR̂S
=
βT∆T

βS∆S
, (14)

where R̂T = βT∆TgHk/DTνT , R̂S = βS∆SgHk/DTνS , and the additional dimension-
less viscosity ratio, γ = νS/νT , arises as part of our problem. Note that, of course, the

product γR̂S is linear with R̂T for a fixed Rρ. The ratio of descending to ascending
finger heights as a function of the viscosity difference is linear with γ (figure 16). Ad-
ditionally, we see that the viscosity of the solution into which the fingers move, rather
than the viscosity of the fingers themselves, plays the critical role in determining their
velocity, i.e. fingers move slower into the sucrose solution than the salt solution.

The simple linear V ∗c ∝ RS relationship can also be extended for high solute

concentrations by considering V ∗c ∝ R̂S (figure 17). Additionally, if we recognize that
our Rρ values for experiments 11, 13 and 14 deviate from our target value of 1.083
more than any other experimental points, we can consider the added influence of the
stabilizing (salt) solution that decreases the buoyant drive and write

V ∗c ∝ R̂S (Rρ + 1) (15)

from a simple scale analysis. Recognizing that Rρ is negative, we see that the small
deviation (∼ 1%) from our target Rρ value for these experiments corresponds to
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Figure 16. Characterization of flow symmetry, hratio (= hdescending/hascending), as a function of
γ(= νS/νT ). Linear regression of the data given as the solid line.
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Figure 17. Comparison of the relationship V ∗c ∝ R̂S (dashed line) to data (solid line) shows a
good match at low and a reasonable match at high concentration. Considering the variation from
the target Rρ (equation 16) for experiments 11, 13 and 14, we see an improved correspondence at
high concentrations (�). However, for �, experiment 12 where the most complex finger structure
emerged, equation (15) does not predict V ∗c well.

∼ 15% change in the magnitude of V ∗c . Replotting these three experimental points
using the actual Rρ for each experiment shows (15) to perform well at high concen-
trations (figure 17, dotted circles). However, (15) is still off in the midrange on the
assent up the Rρ spoke (experiment 11, open diamond compared to dotted circle for

R̂S of 9.32 × 104) and far overpredicts the velocity at the apex (experiment 12, open
square compared to dotted circle for R̂S of 1.25× 105). In both of these experiments
we see increased structural complexity within the finger generation zone, especially at
the apex (figure 4g), and thus we believe additional energy dissipation mechanisms
must be operating such as to result in the observed discrepancy with (15).

With respect to λ∗ at early time and its successive growth, we find that for
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RS > 1.03× 105 (experiments 11 and 12), λ∗ starts off smaller and grows slower than
suggested by extrapolation from dilute behaviour where λ∗early ∝ R−0.5

S and η ∼= 0.5.
Over the range encompassed by experiments up to and including 12, incorporation of γ
into the exponent can capture behavioural trends reasonably well (e.g. η = 0.54/γ3.8).
However, we note that for highly concentrated solutions where we see the most
extreme deviations in behaviour (experiments 13 and 14), we could not measure the
horizontal length scale with reasonable certainty. There, the increase in γ stabilizes
the initial fluid interface with respect to finger pair generation such that the structural
complexity present in experiments 11 and 12 is suppressed. We note, however, that
this suppression may not be a simple function of γ at these high concentrations as τ,
βT and βS all decrease, and the salt and sucrose may additionally interact to influence
both viscous and diffusive processes.

5. Conclusion
Double-diffusive finger convection in a salt–sucrose system was studied at fixed

Rρ with systematic increase in solution concentration. Our results in a Hele-Shaw
cell demonstrate that at low concentrations, observed behaviour requires only two
of the three parameters Rρ, RT and RS to be specified. However, as concentrations
increase, the specifics of the chemical interactions become important. For the salt–
sucrose system, near the Rayleigh number apex, the component diffusion coefficients,
chemical expansion coefficients and fluid viscosities all begin to vary within the
problem domain. For these high concentrations, at least the dimensionless viscosity
ratio, γ = νS/νT , must also be included to describe behaviour. In order to conduct
a more comprehensive study, experimental measurements of full concentration fields
using non-intrusive methods (e.g. Cooper et al. 2001) are required. Such data would
allow us to test hypothesized component flux relations (e.g. Turner 1973) as well
as to both develop and test new numerical simulation approaches (e.g. Stockman et
al. 1998). In closing, we mention that the behaviour of highly concentrated double-
diffusive systems is probably of importance in the fields of metallurgy, material
science, and geophysics where the solutions of interest are often concentrated melts
in problems as diverse as controlled crystal growth and magma convection.
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